
VARIATIONS OF A CLASS OF MONGE-AMPÈRE TYPE
FUNCTIONALS AND THEIR APPLICATIONS
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Abstract. In this paper, we study a class of Monge-Ampère type functionals arising
from the Lp dual Minkowski problem in convex geometry. As an application, we obtain
some existence and non-uniqueness results for the problem.

1. Introduction

The characterisation problem of geometric measures in convex geometry has a long

history and strong influence on fully nonlinear PDEs. A best known example is the

classical Minkowski problem. For a full discussion on this problem and its resolution, one

may consult Cheng-Yau [18] and Pogorelov [34]. Other important geometric measures

in Brunn-Minkowski theory include curvature measures and area measures, and the

associated problems of prescribing curvature and area measures were also intensively

studied. See Schneider’s book [35] for a comprehensive introduction.

Most recently Lutwak-Yang-Zhang [33] introduced the Lp dual curvature measures

and proposed the associated Minkowski type problem. Let K0 be the set of all convex

bodies (i.e., compact convex sets that have non-empty interior) in Rn+1 containing the

origin in their interiors. Associated to each Ω ∈ K0 are the support function u = uΩ :

Sn → R and the radial function r = rΩ : Sn → R, which are respectively defined by

u(x) = max{x · z : z ∈ Ω}, and r(ξ) = max{λ : λξ ∈ Ω}. Let ~r(ξ) = ~rΩ(ξ) := rΩ(ξ)ξ.

Then ∂Ω = {~r(ξ) : ξ ∈ Sn}. Denote by ν = νΩ : ∂Ω→ Sn the spherical image, namely

ν(z) = {x ∈ Sn : z · x = uΩ(x)}. With these notions in hand, the radial Gauss mapping

A = AΩ and the reverse radial Gauss mapping A ∗ = A ∗
Ω are defined as follows: for

any ω ⊆ Sn,

A (ω) = {ν(~r(ξ)) : ξ ∈ ω},

A ∗(ω) = {ξ ∈ Sn : ν(~r(ξ)) ∈ ω}.
(1.1)
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In [33] the Lp dual curvature measures C̃p,q(Ω, ·), where p, q ∈ R, are a two-parameter

family of Borel measures on Sn, defined by 1

(1.2) C̃p,q(Ω, ω) =

ˆ
A ∗(ω)

rq(ξ)

up(A (ξ))
dσSn(ξ).

The associated Minkowski type problem was posed by Lutwak-Yang-Zhang [33]: Given

a finite Borel measure µ on Sn, find necessary and sufficient conditions on µ so that it is

the Lp dual curvature measure of a convex body. If µ is absolutely continuous w.r.t. σSn

and f = dµ
dσSn

is the Radon-Nikodym derivative, then, in terms of the support function

u, the problem reduces to the following Monge-Ampère equations

(1.3) det(∇2u+ uI) =
(
u2 + |∇u|2

)n+1−q
2 up−1f(x) on Sn,

where ∇ is the covariant derivative w.r.t. an orthonormal frame on Sn.

The Lp dual Minkowski problem includes the classical Minkowski problem as a special

case, and unifies the Lp-Minkowski problem and dual Minkowski problem introduced

in [25, 31]. There is a large number of papers devoted to these problems, see e.g.

[4, 7, 16, 17, 19, 21, 30, 32] for the Lp-Minkowski problem, and [5, 15, 24, 25, 29, 38] for

the dual Minkowski problem.

The Lp-Minkowski problem amounts to solve (1.3) with q = n+ 1. It is of particular

interest, as the problem describes the self-similar solutions to the flows by powers of the

Gauss curvature [3, 22]:

(1.4) ∂tX(x, t) = −Kα(x, t)ν(x, t),

where X(·, t) is a time-dependent embedding of a family of convex hypersurfaces Mt,

K(·, t) and ν(·, t) denote the Gauss curvature and unit outer normal ofMt respectively.

In fact the self-similar solutions to (1.4) satisfy (1.3) with f ≡ 1 and p = 1 − 1/α. For

α = 1, flow (1.4) was first studied by Firey [20] to model the shape change of tumbling

stones. It was conjectured that, when α > 1/(n + 2), flow (1.4) deforms each convex

hypersurface in Rn+1 into a round point. Andrews proved the conjecture for the case

n = 1 in [2], and for the case n = 2 and α = 1 in [1]. Very recently Brendle-Choi-

Daskalopoulos [8] resolved this conjecture for all dimensions n ≥ 2. This shows that

u ≡ 1 is the only solution to (1.3) when q = n+ 1, p ∈ (−n− 1, 1) and f ≡ 1. However

1 Lutwak-Yang-Zhang’s Lp dual curvature measure [33] is more general than (1.2), as their definition
allows a dependence of a fixed star body Q (i.e. a compact star-shaped set about the origin). If Q is
taken as the unit ball B1 ⊆ Rn+1, then their conception is formulated by (1.2).
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for non-constant f , the Lp-Minkowski problem admits multiple solutions when p ≤ 0

[23, 27, 28, 37].

For general p, q ∈ R, the existence of solutions to (1.3) was partially addressed in

[6, 12, 14, 26], and the uniqueness of solutions was proved for p > q [26, 33]. The main

goal of this paper is to show a non-uniqueness result for the Lp dual Minkowski problem.

We say u ∈ C2(Sn) is uniformly convex if u is the support function of a convex body

whose boundary has uniformly positive principal curvatures. Our main result is the

following.

Theorem 1.1. Let f ≡ 1. Then equation (1.3) admits an even, smooth, uniformly

convex, positive solution u 6≡ 1, provided that p, q ∈ R satisfy one of the following

(A1) q − 2n− 2 > p ≥ 0,

(A2) q > 0 and −q∗ < p < min{0, q − 2n− 2}, where q∗ is given in (1.9) below.

(A3) p+ 2n+ 2 < q ≤ 0.

Clearly u ≡ 1 is a solution to (1.3) for f ≡ 1. Hence our Theorem 1.1 shows that if

one of (A1)-(A3) holds, then besides the unit ball B1 there is another origin-symmetric

convex body Ω whose Lp dual curvature measure coincides with the standard spherical

measure σSn . Since (1.5) is not affine-invariant unless q = −p = n+ 1, ellipsoids are not

solutions to the problem in general. In [24] the authors showed that, if f ≡ 1, n = 1,

p = 0, and q is an even integer no less than 6, then (1.3) has a non-constant solution.

Our Theorem 1.1 (A1) extends their result.

Theorem 1.1 follows from Theorems 1.2 & 1.3 below. Both theorems are proved by

studying a Monge-Amperè type functional (1.5). For any finite Borel measure σ on Sn

and integrable function g, we use the following convention: 
Sn
gdσ :=

1

σ(Sn)

ˆ
Sn
gdσ.

Let µ and µ∗ be two finite Borel measures on Sn. Consider the functional:

(1.5) Jp,q,µ,µ∗(Ω) = Φp,µ(Ω) + Ψq,µ∗(Ω), for Ω ∈ K0,

where

(1.6) Φp,µ(Ω) =


−1

p
log

 
Sn
upΩ(x)dµ(x), if p 6= 0,

−
 
Sn

log uΩ(x)dµ(x), if p = 0,
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and

(1.7) Ψq,µ∗(Ω) =


1

q
log

 
Sn
rqΩ(ξ)dµ∗(ξ), if q 6= 0,

 
Sn

log rΩ(ξ)dµ∗(ξ), if q = 0.

Observe that Jp,q,µ,µ∗ is homogeneous degree zero, namely

(1.8) Jp,q,µ,µ∗(tΩ) = Jp,q,µ,µ∗(Ω), ∀ t > 0.

For convenience, we shall omit sometimes the subscript µ (or µ∗) in (1.5)-(1.7) if µ (or

µ∗) is exactly the standard spherical measure. We will see that, up to a rescaling, (1.3)

is the Euler equation of functional (1.5) for dµ = fdσSn and dµ∗ = dσSn .

Let Ke0 ⊂ K0 be the set of all origin-symmetric convex bodies. By a Blaschke-Santaló

type inequality [13], we are able to use a variational argument to prove Theorem 1.2

below, which shows the existence of origin-symmetric solutions to the Lp dual Minkowski

problem.

To our best knowledge, even for the symmetric measures, Theorem 1.2 under condition

(B2) gives the first existence result for the problem when p < 0, q > 0 and q 6= n + 1,

hence is of particular interest. We point out that, under condition (B1) or (B3), the

existence of origin-symmetric solutions was obtained in [12, 26] and in [29] for p = 0. As

this existence result is needed in our main result Theorem 1.1, we still include a proof

in this paper for reader’s convenience.

Theorem 1.2. Let dµ∗ = dσSn, dµ = fdσSn, f be an even function on Sn, and 1/C ≤
f ≤ C for some constant C > 0. Assume that p, q ∈ R satisfy one of the following

(B1) p ≥ 0 and q ≥ 0;

(B2) q > 0 and −q∗ < p < 0, where q∗ > 0 is defined as

(1.9) q∗ =



q

q − n
if q > n+ 1,

n+ 1 if q = n+ 1,
nq

q − 1
if 1 < q < n+ 1,

+∞ if 0 < q ≤ 1.

(B3) p ≤ 0 and q ≤ 0.
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Then there is a convex body Ω0 ∈ Ke0 such that

(1.10) Jp,q,µ(Ω0) = max{Jp,q,µ(Ω) : Ω ∈ Ke0}.

Moreover ∂Ω0 is strictly convex and is C1,γ for some γ ∈ (0, 1), and satisfies

(1.11) C̃p,q(Ω0, ω) = λΩ0

ˆ
ω

fdσSn , for any Borel set ω ⊆ Sn,

where

(1.12) λΩ0 =

´
Sn r

qdσSn´
Sn u

pdµ
.

If f is additionally smooth, then the support function uΩ0 is an even, smooth, uniformly

convex, positive solution to (1.3) with f replaced by λΩ0f .

For p 6= q, Ω̃0 := λ
1
p−q
Ω0

Ω0 solves the Lp dual Minkowski problem, namely Ω̃0 satisfies

(1.13) C̃p,q(Ω̃0, ω) =

ˆ
ω

fdσSn , for any Borel set ω ⊆ Sn,

and uΩ̃0
is an even, smooth, uniformly convex, positive solution to (1.3), provided f is

additionally smooth.

Remark 1.1. In [26], the existence of solutions to (1.3) when f is not necessarily even

was obtained for p > q. When p ≤ q, the existence result, without evenness assumption

on f , becomes much more difficult. It was available for p > −n− 1 and q = n+ 1 [19],

and for p > 1 and q > 0 [6]. In a subsequent paper [14], we will prove that, for p > 0

and all q ∈ R, the problem admits a weak solution if the prescribed measure µ is not

concentrated on any closed hemisphere, while the evenness of µ is not required.

Remark 1.2. As in [4], we are able to prove by approximation the Lp dual Minkowski

problem admits an origin-symmetric solution when p, q satisfy condition (B2) in Theorem

1.2, and f is an even and nonnegative function on Sn,
´
Sn fdσSn > 0, and L

q∗
q∗+p -

integrable (when q∗ 6= +∞) or Ls-integrable for some s > 1 (when q∗ = +∞) . See

Theorem 3.2 in Section 3 below.

We then show that, if µ = µ∗ = σSn and q > p + 2n + 2, then the unit ball B1 is not

a maximiser of (1.10). This together with Theorem 1.2 proves Theorem 1.1.

Theorem 1.3. Let µ = µ∗ = σSn. If q > p + 2n + 2, then there is an even function

η ∈ C∞(Sn), and a small ε > 0, such that the convex body Ωt ∈ Ke0, whose support
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function is u(x, t) = 1 + tη(x), satisfies

(1.14) Jp,q(B1) < Jp,q(Ωt), for t ∈ (0, ε).

This paper is organised as follows. In Section 2, we calculate the first and second

variations of functional (1.5). We show that B1 is an unstable critical point of the

functional Jp,q provided q > p + 2n + 2, which consequently proves Theorem 1.3. In

Section 3, we prove Theorem 1.2 via variational argument, and then complete the proof

of Theorem 1.1. The Poincáre inequality on Sn is related to the stability of B1 under the

functional (1.5). It can be obtained by studying the eigenvalues of the spherical Laplace

operator [36]. In Section 4, we provide an alternative proof for the Poincáre inequality

with sharp constant via the uniqueness of the self-similar solution to the flow (1.4) when

α > 1
n+2

[1, 2, 8], which makes our paper self-contained.

2. Second variation for Monge-Ampère type functional (1.5)

Let u and r be respectively the support function and radial function of Ω ∈ K0.

Given any η ∈ C0(Sn), there is an ε > 0, depending on minSn u and maxSn |η|, such that

u(x) + tη(x) > 0 for all x ∈ Sn and |t| < ε. Consider a family of convex bodies

(2.1) Ωt = {z : z · x ≤ u(x) + tη(x), x ∈ Sn}, for |t| < ε.

Let u(x, t) and r(x, t) be the support function and radial function of Ωt.

Lemma 2.1. Suppose that ∂Ω is C1 and strictly convex at z0 ∈ ∂Ω. Then the limits

below exist

u̇(x0) := lim
t→0

u(x0, t)− u(x0, 0)

t
,

ṙ(ξ0) := lim
t→0

r(ξ0, t)− r(ξ0, 0)

t
,

where x0 is the unit outer normal of ∂Ω at z0 and ξ0 = z0/|z0| = A ∗
Ω(x0). Furthermore

(2.2) u̇(x0) = η(x0),

and

(2.3)
ṙ

r
(ξ0) =

u̇

u
(x0).

Proof. By (2.1) and the definition of support function, we have

(2.4) u(x, t) ≤ u(x) + tη(x), for all x ∈ Sn, |t| < ε.
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Therefore

(2.5) lim sup
t→0+

u(x0, t)− u(x0, 0)

t
≤ η(x0).

On the other hand, let uz0(x) = u(x)− z0 · x and uz0(x, t) = u(x, t)− z0 · x. Since ∂Ω is

C1 at z0, one infers that there exists a xt ∈ Sn so that

(2.6) uz0(x0, t) = (uz0 + tη)(xt) with xt → x0 as t→ 0.

For this, as uz0(x0, 0) = uz0(x0) = 0, if xtk → x1 then uz0(x1) = 0 and so x1 is a unit

outer normal at z0. Hence x1 must coincide with x0. Therefore, by uz0(xt) ≥ 0,

lim inf
t→0+

u(x0, t)− u(x0, 0)

t
= lim inf

t→0+

uz0(x0, t)− uz0(x0)

t
(2.7)

= lim inf
t→0+

uz0(xt) + tη(xt)

t
≥ η(x0).

For t→ 0−, (2.4) and (2.6) give respectively

lim inf
t→0−

u(x0, t)− u(x0, 0)

t
≥ η(x0), and lim sup

t→0−

u(x0, t)− u(x0, 0)

t
≤ η(x0).

Hence (2.2) follows.

Next we prove (2.3). For this, let h(x) = (η/u)(x) ∈ C0(Sn). By (2.2), we have

(2.8) u(x0, t) = u(x0) + tη(x0) + o(t).

It follows that

0 = − log r(ξ0) + log u(x0)− log(ξ0 · x0)

= − log r(ξ0) + log u(x0, t)− log(ξ0 · x0) +
(

log u(x0)− log u(x0, t)
)

≥ − log r(ξ0) + log r(ξ0, t)− th(x0) + o(t).(2.9)

On the other hand, since ∂Ω is strictly convex at z0, there is a ξt ∈ Sn such that

− log r(ξt, t) = log(ξt · x0)− log u(x0, t) with ξt → ξ0 as t→ 0.

This together with (2.8) shows that

0 ≤ − log r(ξt) + log u(x0)− log(ξt · x0)

= − log r(ξt) + log u(x0)−
(

log u(x0, t)− log r(ξt, t)
)

= − log r(ξ0) + log r(ξ0, t)− th(x0) + o(t).(2.10)

We complete the proof by (2.9) and (2.10).
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In the rest of this section, we always assume that u is uniformly convex. Then the

radial Gauss mapping A and the reverse radial Gauss mapping A ∗, defined by (1.1),

are one-to-one mappings. Given ω ⊂ Sn, we consider the “cone-like” region inside Ω

C := {z ∈ Rn+1 : z = λν−1(x), λ ∈ [0, 1], x ∈ ω},

where ν denotes the spherical image of Ω. It is well-known that the volume element of

C can be expressed by

dVol(C) =
1

n+ 1

u(x)

K(ν−1(x))
dσSn(x) =

1

n+ 1
rn+1(ξ)dσSn(ξ),

where K(z) is the Gauss curvature of ∂Ω at z. It follows that the determinants of the

Jacobian of the mappings A and A ∗ are given by

|JacA ∗|(x) =
u(x)

rn+1(A ∗(x))K(ν−1(x))
,

|JacA |(ξ) =
rn+1(ξ)K(~r(ξ))

u(A (ξ))
.

(2.11)

Let η ∈ C∞(Sn). By the uniform convexity of u, there is a small ε > 0 such that,

for all |t| < ε, (i) Ωt defined by (2.1) lies in K0; (ii) u(x, t) := u(x) + tη is the support

function of Ωt; and (iii) u(x, t) is uniformly convex. Let us compute the first and second

variations of functional (1.5).

Proposition 2.1. Let Ω ∈ K0 be a convex body whose support function u is uniformly

convex. Given η ∈ C∞, let Ωt be the convex bodies defined by (2.1). Let dµ = fdσSn and

dµ∗ = f ∗dσSn. Denote by α = n+ 1− q, β = p− 1. Then

(2.12)
d

dt

∣∣∣
t=0
Jp,q,µ,µ∗(Ωt) =

1´
Sn r

qdµ∗

ˆ
Sn
Jp,q,µ,µ∗(x)η(x)dσSn(x),

where

Jp,q,µ,µ∗(x) =
f ∗ ◦A ∗

Ω

(r ◦A ∗
Ω)αK

− λuβf(x), with λ =

´
Sn r

qdµ∗´
Sn u

pdµ
,

and K is the Gauss curvature of ∂Ω calculated at ν−1
Ω (x).

8



If Ω is a convex body satisfying Jp,q,µ,σSn ≡ 0, then

d2

dt2

∣∣∣
t=0
Jp,q,µ,σSn (Ωt)(2.13)

=
1´

Sn u
pdµ

{ˆ
Sn

(∑
hijηij +Hη

)
uβηdµ− α

ˆ
Sn
uβ
uη +∇u · ∇η

(r ◦A ∗
Ω)2

ηdµ

−β
ˆ
Sn
uβ−1η2dµ+

p− q´
Sn u

pdµ

( ˆ
Sn
uβηdµ

)2}
,

where {hij} is the inverse matrix of {uij + uδij}, and H =
∑
hii is the mean curvature

of ∂Ω.

Proof. Note that, for all |t| < ε, ∂Ωt are C2 and strictly convex, with uniformly convex

support function u(x, t) = u(x) + tη. Denote by r = r(ξ, t) the radial function of Ωt.

Hence, by (2.11) and Lemma 2.1, we compute the first variation of (1.5) as follows

d

dt
Jp,q,µ,µ∗(Ωt) = − 1ffl

Sn u
pdµ

 
Sn
uβηdµ+

1ffl
Sn r

qdµ∗

 
Sn
rq
ṙ

r
dµ∗

= − 1´
Sn u

pdµ

ˆ
Sn
uβηdµ+

1´
Sn r

qdµ∗

ˆ
Sn

f ∗ ◦A ∗
Ωt

(r ◦A ∗
Ωt

)αK
ηdσSn

=
1´

Sn r
qdµ∗

{ˆ
Sn

f ∗ ◦A ∗
Ωt

(r ◦A ∗
Ωt

)αK
ηdσSn −

´
Sn r

qdµ∗´
Sn u

pdµ

ˆ
Sn
uβfηdσSn

}
,(2.14)

where the geometric quantities above are of Ωt. Taking t = 0, we get (2.12).

Note that r ◦A ∗
Ωt

=
√
u2

Ωt
+ |∇uΩt |2. Letting µ∗ = σSn in (2.14) and then differenti-

ating (2.14) w.r.t. t again, we further calculate, by the assumption Jp,q,µ,σSn ≡ 0,

d2

dt2

∣∣∣
t=0
Jp,q,µ,σSn (Ωt)(2.15)

=
1´

Sn r
qdσSn

{ˆ
Sn

∑
Sijn (ηij + ηδij)

η

(r ◦A ∗
Ω)α

dσSn

−α
ˆ
Sn

uη +∇u · ∇η
(r ◦A ∗

Ω)α+2K
ηdσSn − λβ

ˆ
Sn
uβ−1fη2dσSn

− q´
Sn u

pdµ

( ˆ
Sn

η

(r ◦A ∗
Ω)αK

dσSn
)( ˆ

Sn
uβηdµ

)
+ p

´
Sn r

qdσSn( ´
Sn u

pdµ
)2

( ˆ
Sn
uβηdµ

)2}

=
1´

Sn u
pdµ

{ˆ
Sn
uβ
(∑

hijηij +Hη
)
ηdµ− α

ˆ
Sn
uβ
uη +∇u · ∇η

r2
ηdµ

−β
ˆ
Sn
uβ−1η2dµ+

p− q´
Sn u

pdµ

( ˆ
Sn
uβηdµ

)2}
.

This finishes the proof.
9



�

By virtue of Proposition 2.1, we are able to prove Theorem 1.3.

Proof of Theorem 1.3. Let η ∈ C∞(Sn) be an even function. As the unit ball B1 is

uniformly convex, there is a small ε = εη > 0, depending on η, such that, for all |t| < ε,

Ωη
t := {z ∈ Rn+1 : x · z ≤ 1 + tη(x), x ∈ Sn} has support function u(x, t) = 1 + tη(x),

which is positive and uniformly convex. Clearly Ωη
t ∈ Ke0.

By Proposition 2.1,

(2.16)
d

dt

∣∣∣
t=0
Jp,q(Ωη

t ) = 0,

and

d2

dt2

∣∣∣
t=0
Jp,q(Ωη

t ) =

 
Sn

(
η∆η + (n− α− β)η2

)
dσSn + (p− q)

( 
Sn
ηdσSn

)2

= (q − p)
 
Sn

(
η − η̄

)2
dσSn −

 
Sn
|∇η|2dσSn ,(2.17)

where η̄ :=
ffl
Sn ηdσSn is the mean value of η.

By (i) in Theorem 4.1 below, there is an η0 ∈ C∞(Sn), with η̄0 = 0, η0 6≡ 0, such that

(2n+ 2 +
1

2
δp,q)

 
Sn
η2

0dσSn ≥
 
Sn
|∇η0|2dσSn .

where

δp,q := q − p− 2n− 2 > 0.

Then for Ωt := Ωη0
t , whose support function is 1 + tη0, one has by (2.17)

(2.18)
d2

dt2

∣∣∣
t=0
Jp,q(Ωt) ≥

1

2
δp,q

 
Sn
η2

0dσSn > 0.

For ε0 = εη0 > 0 very small, one knows that ∂Ωt is smooth and uniformly convex for all

|t| < ε0. Hence by (2.17) and (2.18)

Jp,q(Ωt) = Jp,q(B1) + t
d

dt

∣∣∣
t=0
Jp,q(Ωt) +

1

2
t2
d2

dt2

∣∣∣
t=0
Jp,q(Ωt) + o(t2)

> Jp,q(B1), for t ∈ (0, ε′0),

provided ε′0, depending on η0, is sufficiently small.

�

Remark 2.1. When p = 0 and q = n + 1, the second variation of the functional was

obtained in [22].
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3. Proof of Theorems 1.1 & 1.2

In this section, we first prove Theorem 1.2. This together with Theorem 1.3 shows

Theorem 1.1.

Given Ω ∈ Ke0, the polar set of Ω is defined as follows

Ω∗ = {y ∈ Rn+1 : y · x ≤ 1 ∀ x ∈ Ω}.

The following generalised Blaschke-Santaló inequality was proved in [13].

Theorem 3.1 (Blaschke-Santaló type inequality [13]). Given q > 0, let q∗ > 0 be the

number given by (1.9). For γ ∈ (0, q∗], γ 6= +∞, there is a constant Cn,q,γ > 0 such

that,

(3.1)
( 

Sn
rqΩdσSn

) 1
q
(  

Sn
rγΩ∗dσSn

) 1
γ ≤ Cn,q,γ, ∀ Ω ∈ Ke0.

Theorem 3.1 enables us to solve the optimisation problem (1.10).

Proposition 3.1. Under the assumptions of Theorem 1.2, there is a convex body Ω0 ∈
Ke0 solving the maximisation problem (1.10).

Proof. We prove Proposition 3.1 when either (B1) or (B2) holds. For the case (B3), we

use a dual argument.

Assume that either (B1) or (B2) is satisfied. We have p ≤ 0 and q > 0. By the

homogeneity (1.8), it suffices to show there is a Ω0 ∈ Ke0, with Ψq,σSn (Ω0) = 0, such that

(3.2) Φ̃p,µ(Ω0) = max
Ω∈Ke0

{
Φ̃p,µ(Ω) : Ψq,σSn (Ω) = 0

}
,

where

Φ̃p,µ(Ω) :=


−1

p

ˆ
Sn
upΩdµ, if p 6= 0,

−
ˆ
Sn

log uΩdµ, if p = 0.

For (3.2), let {Ωj} ⊂ Ke0, with Ψq,σSn (Ωj) = 0, be a maximising sequence. We denote

uj = uΩj and rj = rΩj for convenience. We claim

(3.3) max
Sn

uj ≤ C,

for some C > 0, independent of j. We next prove (3.3) (under the assumption (B1) or

(B2)) case by case: (i) p < 0; (ii) p = 0; (iii) p > 0.
11



Case I: p < 0. We follow an argument in [19]. Let δ > 0 be a fixed small constant.

Set Sj1 = Sn ∩ {uj ≤ δ}, Sj2 = Sn ∩ {δ < uj < 1/δ} and Sj3 = Sn ∩ {uj ≥ 1/δ}. Since Ωj

is origin-symmetric, we conclude that

(3.4) |Sj1| → 0, |Sj2| → 0, as Lj := max
Sn

uj →∞.

Let Ω∗ be the polar set of Ω, and r∗j = rΩ∗j
. It is well known that r∗j = 1/uj, see e.g.

[35]. Denote γ = −p > 0. By condition (B2), γ < q∗. We have

Φ̃p,µ(Ωj) =
1

γ

ˆ
Sj1∪S

j
2∪S

j
3

u−γj fdσSn

≤ C

ˆ
Sj1

r∗γj dσSn + Cδ|Sj2|+ Cδγ

≤ C
(ˆ

Sn
r∗q
′

j dσSn
) γ
q′ |Sj1|

1− γ
q′ + Cδ|Sj2|+ Cδγ,

for any γ < q′ < q∗. Since
ffl
Sn r

q
jdσSn = 1, if Lj →∞, then by (3.1) and (3.4)

lim sup
j→∞

Φ̃p,µ(Ωj) ≤ Cδγ.

As Φ̃p,µ(Ωj) ≥ Φ̃p,µ(B1) > 0, we arrive a contradiction by letting δ → 0.

Case II: p = 0. Let lj = minSn rj and Lj = maxSn rj. By a rotation of coordinates

we may assume that Lj = rj(e1). Since Ωj is origin-symmetric, the points ±Lje1 ∈ ∂Ωj.

Hence

(3.5) uj(x) = max{z · x : x ∈ Ωj} ≥ Lj|x · e1|, ∀ x ∈ Sn.

Therefore

Φ̃p,µ(Ωj) ≤ −(logLj)/C −
ˆ
Sn

log |x · e1|f(x)dσSn(x)

≤ −(logLj)/C + C,

which implies that Φ̃p,µ(Ωj) → −∞, if Lj → ∞. This cannot occur as {Ωj} is a

maximising sequence.

Case III: p > 0. Again let Lj = maxSn rj. As in Case II, we have (3.5). Hence

Φ̃p,µ(Ωj) ≤ −
1

p

ˆ
{x∈Sn: x·e1≥ 1

2
}
upjdµ ≤ −L

p
j/C → −∞ if Lj →∞.

Since {Ωj} is a maximising sequence, one infers Lj ≤ C.

Combining Case I-III, we have proved (3.3) under the assumption (B1) or (B2).
12



Let w+
j = maxx∈Sn

(
uj(x) + uj(−x)

)
and w−j = minx∈Sn

(
uj(x) + uj(−x)

)
be the

maximum and the minimum of the width of Ωj. We next show that

(3.6) w−j ≥ 1/C,

for some C > 0, independent of j. This estimate together with (3.3) means that Ωj is

of uniformly good shape.

For 0 < q < n+ 1, we have

1 =
( 

Sn
rqjdσSn

)n+1
q ≤

 
Sn
rn+1
j dσSn ≤ CVolume(Ωj) ≤ (w+

j )nw−j ,

which shows (3.6) by using (3.3).

For q ≥ n+ 1, we have

1 =

 
Sn
rqjdσSn = (w+

j )q
 
Sn

( rj
w+
j

)q
dσSn ≤ C(w+

j )q−n−1Volume(Ωj) ≤ C(w+
j )q−1w−j .

Again, (3.6) follows from (3.3).

As above, lj = minSn rj. Assume without loss of generality that lj = rj(e1). By the

symmetry of Ωj,

lj ≥ rj(ξ)|ξ · e1|, ∀ ξ ∈ Sn.

For q = 0, we thus have

0 =

 
Sn

log rjdσSn ≤ log lj −
 
Sn

log |ξ · e1|dσSn ≤ log lj + C.

This shows that lj ≥ δ for some δ > 0 uniformly, and so (3.6) follows.

In virtue of (3.3) and (3.6), we conclude by the Blaschke selection theorem that Ωj,

after passing to a subsequence, converges to a Ω0 ∈ Ke0 in Hausdorff distance, thus

completing the proof under the assumption (B1) or (B2).

For case (B3), let {Ωj} ⊂ Ke0 be a maximising sequence of functional Jp,q,µ. Let

p′ = −q and q′ = −p, and Ω∗j be the polar set of Ωj. One easily sees that

(3.7) Jp,q,µ,σSn (Ω) = Jp′,q′,σSn ,µ(Ω∗) ∀ Ω ∈ Ke0.

It then follows that {Ω∗j} is a maximising sequence of Jp′,q′,σSn ,µ. Observe that if p, q

satisfy (B3), then p′, q′ satisfy (B1). Hence, by our previous argument for (B1), it is not

hard to conclude that, after a proper rescaling, tjΩ
∗
j converges to a Ω∗0 ∈ Ke0 such that

Jp′,q′,σSn ,µ(Ω∗0) = max{Jp′,q′,σSn ,µ(Ω) : Ω ∈ Ke0}
13



By (3.7), we conclude that Ω0 = Ω∗0 satisfies (1.10). Note that if p′, q′ satisfy (B2),

then p, q also satisfy (B2). Hence we would not get more by applying the above dual

argument to (B2).

�

We then show that, after a dilation, the maximiser Ω0 obtained in Proposition 3.1 is

a solution to the Lp dual Minkowski problem, under an additional assumption: ∂Ω0 is

C1 and strictly convex.

Proposition 3.2. If ∂Ω0 is C1 and strictly convex, then Ω0 satisfies (1.11).

Proof. Let u and r be respectively the support function and radial function of Ω0. For

any even function η ∈ C0(Sn), let Ωt ∈ Ke0 be the convex bodies given by (2.1), with u

replaced by u0. Denote by u(x, t) and r(x, t) the support function and radial function

of Ωt. By Lemma 2.1, we have as in proof of Proposition 2.1

d

dt

∣∣∣
t=0
Jp,q,µ(Ωt) =

1´
Sn r

qdσSn

(
− λΩ0

ˆ
Sn
up−1ηdµ+

ˆ
Sn

rq

u ◦AΩ0

η ◦AΩ0dσSn
)
.

By [33, Lemma 5.1], we further calculate

(3.8)
d

dt

∣∣∣
t=0
Jp,q,µ(Ωt) =

1´
Sn r

qdσSn

(
− λΩ0

ˆ
Sn
up−1ηdµ+

ˆ
Sn
up−1ηdC̃p,q(Ω0, ·)

)
.

Since Ω0 is the maximiser and η is arbitrary, we deduce thatˆ
Sn
gdC̃p,q(Ω0, ·) = λΩ0

ˆ
Sn
gdµ, ∀ even function g ∈ C0(Sn),

thus completing the proof by the evenness of f .

�

Proposition 3.3. Let Ω0 be the maximiser obtained in Proposition 3.1. Then ∂Ω0 is

strictly convex and is C1,γ for some γ ∈ (0, 1)

Proof. Let u be the support function of Ω0 and ū = ūΩ0 be its homogeneous degree one

extension, namely ū : Rn+1 → R, defined by

ū(Y ) = sup
Z∈Ω0

Y · Z.

The face of Ω0 with outer normal Y ∈ Rn+1 is then given by

FΩ0(Y ) = {Z ∈ Ω0 : ū(Y ) = Y · Z},
14



which lies in ∂Ω0 provided Y 6= 0, and

(3.9) ∂ū(Y ) = FΩ0(Y ),

where ∂ū(Y ) := {X ∈ Rn+1 : ū(Z) ≥ ū(Y )+〈X,Z−Y 〉, ∀Z ∈ Rn+1 } is the subgradient

of ū at Y . See Schneider’s book [35] for all this.

For e ∈ Sn, let Le be the hyperplane in Rn+1 which is tangential to Sn at e. Denote

by π = πe : Rn → Sn the radial projection from Le to Sn,

π(y) =
y + e√
1 + |y|2

.

Let v = ve : Rn → R be the restriction of ū on Le, that is

(3.10) v(y) = ū(y + e) =
√

1 + |y|2u(π(y)).

It is not hard to check by (3.9) and (3.10) that

(3.11) ∂v(y) =
{
X − (X · e)e : X ∈ ∂ū(y + e)

}
.

Let Hn denotes the n-dimensional Hausdorff measure. Recall that the surface area

measure S(Ω0, ·) is defined as

(3.12) S(Ω0, ω) = Hn(ν−1
Ω0

(ω)), for Borel set ω ⊂ Sn.

It follows from (3.9)-(3.11) that for any D ⊂ Rn

(3.13) Mv(D) =

ˆ
π(D)

〈x, e〉 dS(Ω0, x),

where Mv(D) := Hn(∂v(D)) is the Monge-Ampère measure associated to v. We claim

that, S(Ω0, ·) is absolutely continuous w.r.t. σSn , and there is a C > 0, such that

(3.14) 1/C ≤ %Ω0 :=
dS(Ω0, ·)
dσSn

≤ C.

Note that %Ω0 is the reciprocal Gauss curvature if Ω0 is C2 smooth. Once (3.14) is

proved, we deduce by (3.13) and detDπ(y) = (1 + |y|2)−
n+1
2 that

(3.15) dMv =
%Ω0 ◦ π

(1 + |y|2)
n+2
2

dy.

For (3.15), one may consult [18, 35] for a full discussion. By (3.14) and (3.15), the

density of the Monge-Ampère measure of v in a compact set is bounded between two

constants. For a given y0 ∈ Rn, let `y0 be the support function of v(y) at y0. In view

of (3.11), the contact set Cy0 := {y ∈ Rn : v(y) = `y0(y)} cannot contain a straight

line in Rn. Hence we conclude by [9, 11] that v is strictly convex and C1,γ′

loc for some
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γ′ ∈ (0, 1). See also [19]. This implies that ∂Ω0 is strictly convex. Let ϕ : D′ → R be

the convex function such that {(x, ϕ(x)) : x ∈ D′} ⊆ ∂Ω0, where D′ is a closed convex

domain, containing the origin, lying in Ω0 ∩ {X ∈ Rn+1 : X · e = 0}. One can check

that ϕ is exactly the Legendre transform of v. Therefore, by(3.14) and (3.15), dMϕ/dx

is bounded between two positive constants. By [9, 11], ϕ is C1,γ for some γ ∈ (0, 1).

It remains to show (3.14). For η ∈ C0(Sn), consider

Ωt = {z ∈ Rn+1 : x · z ≤ etη(x)u(x), ∀ x ∈ Sn},

which is a perturbation of Ω0. Denote by ut = u(x, t) and rt = r(ξ, t) the support and

radial functions of Ωt. It follows from [33, Theorem 6.4] that

(3.16)
d

dt

∣∣∣
t=0

Ψq(r
t) =

1´
Sn r

qdσSn

ˆ
Sn
ηdC̃q(Ω0, ·).

Since ut ≤ etηu, one has

(3.17) lim
t→0+

ut(x)− u(x)

t
≤ ηu(x).

By (3.16) and (3.17), we obtain

0 ≥ lim
t→0+

Jp,q(Ωt)− Jp,q(Ω0)

t

≥ 1´
Sn r

qdσSn

{
− λΩ0

ˆ
Sn
upηdµ+

ˆ
Sn
ηdC̃q(Ω0, ·)

}
=

1´
Sn r

qdσSn

{
− λΩ0

ˆ
Sn
upfηdσSn +

ˆ
Sn

(r ◦A ∗
Ω0

)q−n−1uηdS(Ω0, ·)
}
,

where λΩ0 is given by (1.12), and the last equality is due to [25, Lemma 3.7]. Since η is

arbitrary, u and r are bounded between two positive constants, we get

%Ω0 ≤ C.

Let Ω∗0 be the polar set of Ω0. Then r∗ = 1/u, see e.g. [35]. For η ∈ C0(Sn), consider

Ω∗t = conv{etη(x)r∗(x)x : x ∈ Sn},

and Ωt = (Ω∗t )
∗. Denote by u∗t = u∗(ξ, t) and r∗t = r∗(x, t) the support and radial

function of Ω∗t , by ut = u(x, t) and rt = r(ξ, t) the support and radial function of Ωt.

Since r∗t ≥ etηr∗, one gets ut ≤ e−tηu. Therefore

(3.18) lim
t→0+

ut(x)− u(x)

t
≤ −ηu(x).
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By [33, Theorem 6.1],

(3.19)
d

dt

∣∣∣
t=0

Ψq(r
t) = − 1´

Sn r
qdσSn

ˆ
Sn
ηdC̃q(Ω0, ·).

It follows by (3.18) and (3.19)

0 ≥ lim
t→0+

Jp,q(Ωt)− Jp,q(Ω0)

t

≥ 1´
Sn r

qdσSn

{
λΩ0

ˆ
Sn
upfηdσSn −

ˆ
Sn

(r ◦A ∗
Ω0

)q−n−1uηdS(Ω0, ·)
}
,

which shows that

%Ω0 ≥ 1/C.

This completes the proof.

�

Remark 3.1. To see the maximiser of the optimisation problem (1.10) is a solution to

the Lp dual Minkowski problem (1.11), one can also follow the argument in [25, Lemma

5.1].

We are at the position to finish the proof of Theorem 1.2.

Proof of Theorem 1.2. By Proposition 3.1-3.3, it remains to show u = uΩ0 is smooth

and uniformly convex. Note that for p 6= q, it is not hard to see Ω̃0 := λ
1
p−q
Ω0

Ω0 satisfies

(1.13), and uΩ̃0
solves (1.3). By the homogeneity (1.8), Ω̃0 is also a maximiser for (1.10).

By [25, Lemma 3.7] and [33, Proposition 5.4], it follows from (3.8) that, ∀ η ∈ C0(Sn),

d

dt

∣∣∣
t=0
Jp,q,µ(Ωt) =

1´
Sn r

qdσSn

(
− λΩ0

ˆ
Sn
up−1ηfdσSn +

ˆ
Sn

(r ◦A ∗
Ω0

)q−n−1ηdS(Ω0, ·)
)
.

Since Ω0 is the maximiser of (1.10), we obtain

(3.20)
dS(Ω0, ·)
dσSn

= λΩ0(r ◦A ∗
Ω0

)n+1−qup−1f.

Given any e ∈ Sn, let v and ϕ = v∗ (the Legendre transform of v) be as in Proposition

3.3. Then

(3.21) detD2v = λΩ0(1 + |y|2)−
n+1+p

2 vp−1(|Dv|2 + (Dv · y − v)2)
n+1−q

2 f ◦ π,
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and

(3.22) detD2ϕ = λ−1
Ω0

(1+ |Dϕ|2)
n+1+p

2 (Dϕ ·x−ϕ)1−p(|x|2 +ϕ2)−
n+1−q

2 /f(
Dϕ,−1√
1 + |Dϕ|2

),

in the Aleksandrov sense. By Proposition 3.3, v and ϕ are strictly convex and are C1,γ

for some γ ∈ (0, 1).

If f is Hölder, then the right hand sides of (3.21) and (3.22) are both Hölder continu-

ous. By [10], v and ϕ are both C2,γ′ for some γ′ ∈ (0, 1). Smoothness of v and vφ then

follows from the standard theory of uniformly elliptic equations, provided f ∈ C∞(Sn).

Hence ∂Ω0 is smooth. By (3.20), u ∈ C∞(Sn) solves (1.3) with f replaced by λΩ0f .

�

The following result improves Theorem 1.2 under condition (B2).

Theorem 3.2. Let p, q satisfy condition (B2) in Theorem 1.2, and dµ = fdσSn, where

f is an even, non-negative function and
´
Sn fdσSn > 0. Assume that f ∈ L

q∗
q∗+p (Sn) if

q∗ 6= +∞, or f ∈ Ls(Sn) for some s > 1 if q∗ = +∞. Then there is a convex body

Ω ∈ Ke0 such that C̃p,q(Ω, ω) = µ(ω) for all Borel set ω ⊆ Sn.

Proof. We use an approximation argument similar to [4]. For positive integers j, let

dµj = fjdσSn be a sequence of measures, where fj is a truncation of f ,

fj(x) =


j if f(x) ≥ j,

f(x) if 1/j < f(x) < j,

1/j if f(x) ≤ 1/j.

Recall that Jp,q,µj satisfies (1.8). Hence by Theorem 1.2, there is a Ω̃j ∈ Ke0 such that,

(3.23) C̃p,q(Ω̃j, ω) = µj(ω), for any Borel set ω ⊆ Sn,

and if r̃j = rΩ̃j
and ũj = uΩ̃j

then

(3.24)
( 

Sn
ũpjdµj

)− 1
p
(  

Sn
r̃qjdσSn

) 1
q

= expJp,q,µj(Ω̃j) ≥ expJp,q,µj(B1) ≥ 1/Cf,n,p,

for a positive constant Cf,n,p > 0, independent of j.

Let Ωj = λjΩ̃j, where λj =
( ffl

Sn r̃
q
jdσSn

)− 1
q

so that

(3.25)

 
Sn
rqΩjdσSn = 1.
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Let uj = uΩj , rj = rΩj and Lj := maxSn uj. As in the proof of Proposition 3.1, for

a small constant δ > 0, let Sj1 = Sn ∩ {uj ≤ δ}, Sj2 = Sn ∩ {δ < uj < 1/δ} and

Sj3 = Sn ∩ {uj ≥ 1/δ}. It is not hard to see that

(3.26) |Sj1| → 0 and |Sj2| → 0, if Lj →∞.

First let us consider the case q∗ 6= ∞. Denote γ = −p > 0 and r∗j = rΩ∗j
, the radial

function of Ω∗j (the polar set of Ωj). We haveˆ
Sn
upjdµj =

ˆ
Sj1∪S

j
2∪S

j
3

u−γj fjdσSn

≤ C
( ˆ

Sn
r∗q
∗

j dσSn
) γ
q∗
(ˆ

Sj1

f
q∗

q∗−γ
j dσSn

) q∗−γ
q∗

+ Cδ

ˆ
Sj2

fjdσSn + Cδγ(3.27)

→ Cδγ, if Lj →∞,(3.28)

where f ∈ L
q∗
q∗+p (Sn), (3.1), (3.25) and (3.26) are used for the last line. As the LHS of

(3.24) is rescaling invariant, its value is unchanged if ũj, r̃j are replaced by uj, rj. We

conclude that Lj are uniformly bounded, by (3.25), (3.28) and sending δ → 0. As in the

proof of Proposition 3.1, we also deduce from (3.25) that lj := minSn uj stay uniformly

away from zero.

In view of (3.23), for q∗ 6= +∞.

(3.29)ˆ
Sn
r̃qjdσSn =

ˆ
Sn
ũpjdµj =

ˆ
Sn
r̃∗γj fjdσSn ≤

(ˆ
Sn
r̃∗q
∗

j dσSn
) γ
q∗
( ˆ

Sn
f

q∗
q∗−γ
j dσSn

) q∗−γ
q∗
.

The first equality in (3.29) together with (3.24) shows thatˆ
Sn
r̃qjdσSn ≥ 1/Cf,n,p,q > 0.

While the inequality in (3.29), (3.1) and f ∈ L
q∗
q∗+p (Sn) giveˆ

Sn
r̃qjdσSn ≤ Cf,n,p,q.

Hence 1/Cf,n,p,q ≤ λj ≤ Cf,n,p,q, for a constant Cf,n,p,q > 0 only depending on f, n, p, q.

The above estimates for Lj, lj, λj imply maxSn uΩ̃j
and minSn uΩ̃j

are uniformly bounded

from above and below. By the Blaschke selection theorem, Ω̃j converges, after passing to

a subsequence, to a Ω ∈ Ke0 in Hausdorff distance. By the weak convergence of Lp dual

curvature measures [33, Proposition 5.2], it follows from (3.23) that C̃p,q(Ω, ω) = µ(ω),

thus completing the proof for q∗ 6= +∞.
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When q∗ = +∞, (3.27) and (3.29) still hold if q∗ is replaced by α = sγ
s−1

. Hence we

can finish the proof by the same discussion as above.

�

Next we prove Theorem 1.1.

Proof of Theorem 1.1. By Theorem 1.2 and by the homogeneity (1.8), there is a Ω0 ∈ Ke0
such that uΩ0 is a solution to the equation (1.3) with f ≡ 1 and Jp,q(Ω0) = max{Jp,q(Ω) :

Ω ∈ Ke0}. We deduce from Theorem 1.3 that

Jp,q(B1) < Jp,q(Ω0).

Therefore uΩ0 6= uB1 . While uB1 ≡ 1 and uΩ0 both solve (1.3) when f ≡ 1.

�

4. Sharp Poincaré inequality on Sn

This section is devoted to the Poincaré inequality on Sn. This inequality is well-

known and has many applications. It can be proved by studying the eigenvalues of the

spherical Laplace operator [36]. We prove it by the stability of the unit ball B1 under

the functional (1.5) and the uniqueness of the self-similar solution to the powered Gauss

curvature flow (1.4).

Theorem 4.1. We have

(i)

inf
{ffl

Sn |∇η|
2dσSnffl

Sn η
2dσSn

: η ∈ C∞(Sn) is even,

 
Sn
ηdσSn = 0, η 6≡ 0

}
= 2n+ 2;

(ii)

inf
{ffl

Sn |∇η|
2dσSnffl

Sn η
2dσSn

: η ∈ C∞(Sn),

 
Sn
ηdσSn = 0, η 6≡ 0

}
= n.

Remark 4.1. By approximation, Theorem 4.1 holds for η ∈ W 1,2(Sn).

Proof of (i) in Theorem 4.1. Let Ωt = {z ∈ Rn+1 : z · x ≤ 1 + tη(x)} ∈ Ke0. Consider

Jp(Ωt) := Jp,n+1(Ωt).
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By Proposition 2.1, or more precisely by letting q = n+ 1 in (2.17), we have

(4.1)
d2

d2

∣∣∣
t=0
Jp(Ωt) = (n+ 1− p)

 
Sn

(η − η̄)2dσSn −
 
Sn
|∇η|2dσSn .

When f ≡ 1 and q = n + 1, (1.3) is the equation of the self-similar solutions to the

flow (1.4) with p = 1− 1/α. By [1, 2, 8], u ≡ 1 is the only solution for p ∈ (−n− 1, 1)
2. By [3, 19], the equation (1.3) with p > −n− 1 and q = n+ 1 admits a solution which

maximises the functional Jp. We therefore conclude that

d2

d2

∣∣∣
t=0
Jp(Ωt) ≤ 0, ∀ p > −n− 1.

This together with (4.1) implies, by letting p→ −n− 1,

(4.2)

 
Sn

(η − η̄)2dσSn ≤
1

2n+ 2

 
Sn
|∇η|2dσSn .

We next show (4.2) is sharp. Assume not, then for sufficiently small ε > 0, there is

an even ηε 6≡ 0, η̄ε = 0, such that 
Sn
|∇ηε|2dσSn = (2n+ 2− 2ε)

 
Sn
η2
εdσSn .

Let Ωηε
t = {z ∈ Rn+1 : z · x ≤ 1 + tηε}. Then for p = −n− 1 + ε we have by (4.1),

d2

d2

∣∣∣
t=0
J−n−1+ε(Ω

ηε
t ) = ε

 
Sn
η2
εdσSn > 0.

This means, by virtue of [3, 19], there is another convex body Ω′ 6= B1 maximising

J−n−1+ε among Ke0, and uΩ′ solves (1.3) with f ≡ 1, p = −n − 1 + ε, and q = n + 1,

contradicting with the uniqueness of the solution.

�

Proof of (ii) in Theorem 4.1. Consider the functional

(4.3) J̃p(Ω, z) = −1

p
log

 
Sn
upzdσSn +

1

n+ 1
log

 
Sn
rn+1
z dσSn ,

where z ∈ Int Ω and uz, rz are the support and radial function of Ω w.r.t. the centre

z, namely uz(x) = max{(y − z) · x : y ∈ Ω} and rz(ξ) = max{λ : λξ + z ∈ Ω}.
This functional was used by Andrews-Guan-Ni [3] in the study of the flow (1.4) with

α = (1 − p)−1. Note that the second term on the RHS of (4.3) is independent of z, as
1

n+1

´
Sn r

n+1
z dσSn = Volume(Ω).

2In fact u ≡ 1 is also the unique solution for p > 1 and p 6= n+ 1, see e.g. [32].
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Given Ω, let ze = ze(Ω) be the entropy point of Ω, namely ze minimises

z 7→ J̃p(Ω, z), among all z ∈ Int Ω.

For p < 1, it was proved in [3] that for each bounded convex Ω with Int Ω 6= ∅, there

exists a unique entropy point ze ∈ IntΩ, and one readily sees

(4.4)

ˆ
Sn

x

u1−p
ze (x)

dσSn(x) = 0.

Let Ωt = {z ∈ Rn+1 : z ·x ≤ 1 + tη} ∈ K0. Denote by z(t) = ze(Ωt), the entropy point

of Ωt. By Lemma 2.1, we compute, for |t| very small,

(4.5)
d

dt
J̃p(Ωt, z(t)) =

1´
Sn r

n+1
z dσSn

(ˆ
Sn

η

K
dσSn−

´
Sn r

n+1
z dσSn´

Sn u
p
zdσSn

ˆ
Sn
up−1
z (η−ż ·x)dσSn

)
,

where uz, rz are support and radial function of Ωt w.r.t. z = z(t), and K is the Gauss

curvature of Ωt. Differentiating (4.5) again, we obtain

d2

dt2
J̃p(Ωt, z(t))(4.6)

=
1´

Sn r
n+1
z dσSn

{ˆ
Sn

hij(ηij + ηδij)

K
ηdσSn − β

´
Sn r

n+1
z dσSn´

Sn u
p
zdσSn

ˆ
Sn
up−2
z η(η − ż · x)dσSn

− n+ 1´
Sn u

p
zdσSn

ˆ
Sn

η

K
dσSn

ˆ
Sn
up−1
z ηdσSn + p

´
Sn r

n+1
z dσSn( ´

Sn u
p
zdσSn

)2

( ˆ
Sn
up−1
z ηdσSn

)2}
,

where β = p− 1 and hij is the inverse matrix of uij + uδij. By (4.4), one hasˆ
Sn
up−1
z ż · xdσSn = 0, ∀ t.

Differentiate this identity w.r.t. t to get

(4.7)

ˆ
Sn
up−2
z ηż · xdσSn =

ˆ
Sn
up−2
z (ż · x)2dσSn .

Hence one infers by plugging (4.7) in (4.6) and by Ω0 = B1, z(0) = 0,

d2

dt2

∣∣∣
t=0
J̃p(Ωt, z(t)) =

 
Sn

(∆η + nη)ηdσSn − β
 
Sn
η2dσSn + β

 
Sn

(ż · x)ηdσSn

−(n+ 1− p)
( 

Sn
ηdσSn

)2

= −
 
Sn
|∇η|2dσSn + (n+ 1− p)

 
Sn

(η − η̄)2dσSn + β

 
Sn

(ż · x)2dσSn .(4.8)
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It is straightforward to see

(4.9)

 
Sn

(ż · x)2dσSn = |ż|2
 
Sn

(
ż

|ż|
· x)2dσSn = |ż|2

 
Sn
x2

1dσSn .

Since z(t) is determined by (4.4), hence depends on p. For clarification, let us denote it

by zp(t). Then we have by differentiating (4.4)

0 = (p− 1)

 
Sn
up−2
zp(t)(η − żp · x)xdσSn , for all p < 1.

Sending t = 0, we have 
Sn
ηxdσSn =

 
Sn

(żp(0) · x)xdσSn = |żp(0)|
 
Sn

(ep · x)xdσSn ,

where ep = żp(0)/|żp(0)|. Multiplying ep at both sides one deduces

(4.10) |żp(0)| =
( 

Sn
x2

1dσSn
)−1

 
Sn

(x · ep)ηdσSn ≤ C|η|L1(Sn), for all p < 1.

As B1 maximises J̃p among all Ω ∈ K0 [1, 2, 3, 8], we have by plugging (4.9) in (4.8)

0 ≥ −
 
Sn
|∇η|2dσSn + (n+ 1− p)

 
Sn

(η − η̄)2dσSn + (p− 1)|żp(0)|2
 
Sn
x2

1dσSn .

Sending p→ 1, we get by (4.10)

(4.11)

 
Sn

(η − η̄)2dσSn ≤
1

n

 
Sn
|∇η|2dσSn .

It remains to show (4.11) is sharp. If not, then for sufficiently small ε > 0, there is an

ηε 6≡ 0, η̄ε = 0, such that 
Sn
|∇ηε|2dσSn = (n−

√
ε)

 
Sn
η2
εdσSn .

Let Ωηε
t = {z ∈ Rn+1 : z · x ≤ 1 + tηε}. Then for p = 1− ε, by (4.8) and (4.10)

d2

d2

∣∣∣
t=0
J̃1−ε(Ω

ηε
t , z(t)) = (

√
ε+ ε)

 
Sn
η2
εdσSn − ε|ż1−ε(0)|2

 
Sn
x2

1dσSn

≥ C−1
√
ε|ηε|2L1(Sn) − Cε|ηε|2L1(Sn)

> 0,

provided ε sufficiently small. This implies that B1 is not a maximiser of J̃p, thus arriving

a contradiction.

�
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